Criterion B: Design Overview

1. GUl development
a) GUI deprecated version: not shown to the client

b) GUI version 1: Before client feedback (see Appendix A.2)
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c) GUI version 2: After client feedback (see Appendix A.2)
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3. Flowcharts outlining the retrieval of data from the database using functions
a) SearchStudent —initialiaze the search for a student

SearchStudents()

Get surname from
entry

Is surname siring
empty or equals "Enter e Show Error
surname"?

AlterStudents(
surname)




b) AlterStudents — manages what is shown on the students display
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c) ConstructDictKey — adds necessary search conditions for the students look-up in
the database

ConstructDictKey(
class_name,
surname)

and_needed_dict =
{True: "AND",
False: ™}
and_needed = True

¥
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with_surname =
f'surname LIKE
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if class_name ==
"-None-"

and_needed = False
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d) ConstructQuery — creates a dynamic prompt for an SQL query

ConstructQueny(
sorting_element,
sorting_order,
where_clause)

convert_gui_sgl = {"A-Z"
"ASC""Z-A" "DESC}

guery ="
SELECT student_id, first_name,
surname, class_name
FROM students
INNER JOIM classes
0N studenis.class_id =
classes.class_id
fwhere_clause}
CORDER BY {sorting_eglement}
{convert_gui_sgl[sorting_order]}

query




e) GetStudents — manages transaction against the database
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4. Testing plan:

All tests will reside within the /tests folder, categorized into two main sections:
"students alter" and "students display". The former focuses on testing changes to
existing and new student records, while the latter handles testing for deletion and
data retrieval. Within each of these folders, there will be separate sections for testing
GUI elements and database elements.

Database element tests will be conducted using the 'pytest' package, which allows
running specific sets of tests using "marks". | will use four marks:
e dbalteration: for testing code related to altering records such as adding classes

e validation: for testing data validation code

e constructing: for testing the code responsible for constructing dynamic SQL

queries

e fetching: for testing code that retrieves data

The pytest configuration, including the marks, will be saved in "pytest.ini" for easy

management of tests.

Test plan is summarized in the following table:

Action to be tested

Test Method

Modes for adding and updating
classes and students display
correctly

Run the frame with the four options
as a separate GUI sub-app

Entries are correctly added to the
database

Create multiple arguments for
adding options and check database

Validation prevents adding
incomplete entries

Use pytest to create incorrect entries
and check for correct errors

Display settings, student view, and
tools display correctly

Run frames for each part as separate
GUI sub-apps

Entries fetched correctly in different
variations (e.g., ordered by name)

Use pytest to create different data
requests and check output

Database queries constructed
correctly for required data retrieval

Use pytest to create data requests
and check for expected queries
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