Criterion B: Design Overview

1. GUl development
a) GUI deprecated version: not shown to the client

b) GUI version 1: Before client feedback (see Appendix A.2)

Switch: alters between
dark and whit theme

Entry + button: entry gives
place to type surname

Combobox + button: combobox gives &
choice bewteen students and class
modes and button confirms removal

Combobox: combobox allows

you to choose students from a
particular class

and button accepts the
search

Treeview: display

v

Tl

L

J

Label frame: holds
widgets together

First Name Surname

students along with
their ID, first name and
surname

Button: open portfolios

Q000

Radiobuttons: allow to add
a student, update a
student, add a class, and
update a class, respectively

/

Label frame: holds
together radiobuttons

/

and entries

Entries: provide space

of chosen students

to type students data

Buttons: confirms
changes to students

and classes




c) GUI version 2: After client feedback (see Appendix A.2)

Switch: alters between

dark and whit theme \

Combobox + button: combobox gives a

modes and button confirms removal

/ choice bewteen students and class

-

Entry + button: entry gives

place to type surname
and button accepts the

L1

Label frame: holds
widgets together

search
Comboboxes:
Label frame: holds
A: order students by IA N I I 8 N~ I I c "l I n widgets together
surname or first name
B: students in descending
or ascending aphabetical ID First Name Surname Classs 7
order
C: choose students from a
class “1

Treeview: display
students along with
their ID, first name and
surname

Radiobuttons: allow to add
a student, update a

student, add a class, and
update a class, respectively
Label frame: holds

together radiobuttons
and entries

Entries: provide space

Button: open portfolios |

of chosen students —

to type students data

Buttons: confirms
p—— changes to students
and classes

Database schema

B students
145 student _id

REC first_name
REC gl rname
123 class_id
REC ]

-

FH classes

14 class id

REC Class name




3. Flowcharts outlining the retrieval of data from the database using functions
a) SearchStudent —initialiaze the search for a student

SearchStudents()

Get surname from
entry

Is surname siring
empty or equals "Enter e Show Error
surname"?

AlterStudents(
surname)




b) AlterStudents — manages what is shown on the students display

AlterStudents(
surname)

Get sorfing element,
sorting condition,
class name

GetStudentsi
sorting element,
sortiing condition.
class name)

Set students and info to
the returned values of
GetStudents

I5 info "Available

ctudents™? T = Deleteltems()

ez

v

Fillstudents Treeview()




c) ConstructDictKey — adds necessary search conditions for the students look-up in
the database

ConstructDictKey(
class_name,
surname)

and_needed_dict =
{True: "AND",
False: ™}
and_needed = True

¥
with_class =
"tlass_name=
(clags_name)”
with_surname =
f'surname LIKE
lsurname}¥"

if class_name ==
"-None-"

and_needed = False

es— with_class =™

and_needed = Falze

if surname is empty with surname = ™

e s—m

condition = T{with_class}
{and_needed_dictland_needed]} {with
surname}”

if with_class or
with_surname
are empty

empty string

TWHERE
{condition}”




d) ConstructQuery — creates a dynamic prompt for an SQL query

ConstructQueny(
sorting_element,
sorting_order,
where_clause)

convert_gui_sgl = {"A-Z"
"ASC""Z-A" "DESC}

guery ="
SELECT student_id, first_name,
surname, class_name
FROM students
INNER JOIM classes
0N studenis.class_id =
classes.class_id
fwhere_clause}
CORDER BY {sorting_eglement}
{convert_gui_sgl[sorting_order]}

query




e) GetStudents — manages transaction against the database

GetStudents(
sorting_element,
sorting_condition,
class_name, surname

data = {"class_name":
class_name}

h 4

ConstructDictkey(
class_name,
surname)

h 4

where_clause
returned

Y

ConstructQuenry(
sorting_element,
sorting_order,
where_clause)

query returned

query,
data

chosen_students
from the query

info = "Available
students”

if chosen_students
is empty

chosen_students,
info

info = "MNo students
available”




4. Testing plan:

All tests will reside within the /tests folder, categorized into two main sections:
"students alter" and "students display". The former focuses on testing changes to
existing and new student records, while the latter handles testing for deletion and
data retrieval. Within each of these folders, there will be separate sections for testing
GUI elements and database elements.

Database element tests will be conducted using the 'pytest' package, which allows
running specific sets of tests using "marks". | will use four marks:
e dbalteration: for testing code related to altering records such as adding classes

e validation: for testing data validation code

e constructing: for testing the code responsible for constructing dynamic SQL

queries

e fetching: for testing code that retrieves data

The pytest configuration, including the marks, will be saved in "pytest.ini" for easy

management of tests.

Test plan is summarized in the following table:

Action to be tested

Test Method

Modes for adding and updating
classes and students display
correctly

Run the frame with the four options
as a separate GUI sub-app

Entries are correctly added to the
database

Create multiple arguments for
adding options and check database

Validation prevents adding
incomplete entries

Use pytest to create incorrect entries
and check for correct errors

Display settings, student view, and
tools display correctly

Run frames for each part as separate
GUI sub-apps

Entries fetched correctly in different
variations (e.g., ordered by name)

Use pytest to create different data
requests and check output

Database queries constructed
correctly for required data retrieval

Use pytest to create data requests
and check for expected queries

Word count: 247




