
Criterion C: Development

Techniques Used in CAS Manager Development
1. Adding and updating ... 2

1.1 Dependency inversion .. 2

1.2 Descriptors ... 3

2. Database ... 4

2.1 Context manager .. 4

2.2 Functional programming .. 5

3. Modular programming .. 7

3.1 Inheritance ... 7

3.2 File paths .. 9

4. Third-party software ... 9

4.1 Packages ... 9

a) Requests: .. 9

b) Pyinstaller ... 9

c) Pytest .. 9

4.2 Theme .. 11

List of references ... 12

1. Adding and updating

1.1 Dependency inversion
Dependency inversion allows high-level modules to be independent of the specific

implementation details of low-level modules (Wikipedia, 2021). In the CAS Manager

program, this concept is utilized through the creation of an abstract layer known as an

Abstract Base Class (ABC). The purpose of this ABC is to separate the management of

database transactions—such as adding and updating records—from the actual

implementation of these transactions (Success Criteria 1-2).

By employing dependency inversion, CAS Manager gains several advantages. Firstly, it

becomes more extensible, as introducing new functionalities for altering the database only

requires creating another implementation for the ABC. This addition does not impact other

parts of the codebase, making future updates and modifications easier to manage.

Additionally, dependency inversion simplifies the debugging process by providing clearly-

defined interfaces for each database-altering functionality. This clarity helps ensure the

development of error-free software, enhancing the overall quality of the product delivered

to the client.

Figure 1. Defining ABC (‘AlterDB()’).

Figure 2. Using abstraction layer – method ‘alter()’.

Figure 3. Example implementation of the ABC.

1.2 Descriptors
In Python, descriptors are objects that customize how attributes are accessed, stored, and

deleted (Python documentation, n.d.; Real Python, 2019). In CAS Manager, they validate

data before insertion into the database (Success Criterion 11).

Utilizing descriptors offers several benefits. It notably reduces code redundancy compared

to using setters and getters method, or a property decorator, which would require separate

implementations in each class. It also aids in debugging, minimizing errors as code is written

once. This not only enhances the user experience for the client but also opens doors for

more flexible and robust future developments in CAS Manager.

Figure 4. Template for accessing attributes.

Figure 5. Ensuring that all data were provided.

2. Database

2.1 Context manager
Context managers in Python offer a streamlined and error-free approach to managing

resources like files and network connections (Python documentation, n.d.; Real Python,

2021). By leveraging the 'with' statement, Python creates a runtime context that automates

the opening and closing of connections to resources.

In CAS Manager, a custom context manager is implemented to handle database

connections seamlessly (Success Criteria 1-8). This custom context manager ensures the

proper management of database connections, preventing common issues such as denied

access due to too many open connections. This approach optimizes the performance and

reliability of the application, contributing to a smoother user experience.

Figure 6. Custom context manager implementation (‘SQLite()’).

Figure 7. Using context manager to retrieve class names.

2.2 Functional programming
Functional programming, a programming paradigm centered on evaluating functions for

computation (Real Python, 2021; Wikipedia, 2019), forms the foundation of CAS Manager's

database operations and transaction designs. The database schema, as defined in Criterion

B.2, is constructed and managed using a functional programming approach, notably for

tasks like retrieving students in ascending alphabetical order (Success Criteria 1-8).

Incorporating a functional approach offers several advantages within CAS Manager's

development. By reducing the need for boilerplate code often associated with OOP

solutions, the codebase becomes clearer and more concise. This clarity not only simplifies

the understanding of the code but also streamlines the testing process, ensuring the

reliability and efficiency of CAS Manager's functionalities.

Figure 8. Implementing database schema via a built-in library.

3. Modular programming
Modularity plays a pivotal role in the design of CAS Manager, breaking down the entire

codebase into smaller, manageable chunks (Success Criteria 1-11). This approach enhances

both the maintainability and reusability of the software.

Maintenance: modularity reduces interdependencies between different parts of CAS

Manager such that updates or changes can be made to individual modules with minimal

impact on other parts.

Reusability: modularity promotes code reuse. Once a module is developed, it can be utilized

across different sections of CAS Manager without the need for rewriting, which saves time

and effort, and ensures consistency and reliability across the application.

Figure 9. Main body of CAS Manager.

3.1 Inheritance
In OOP, inheritance establishes a class hierarchy, enabling child classes to inherit attributes

and methods from a parent class (Python documentation, n.d.). CAS Manager effectively

leverages inheritance to design modular GUI components (Criterion B.1.c) (). For example,

CAS Manager segregates the creation of radio buttons for alteration modes (such as adding

and updating classes and students) from the tree view of student display through

inheritance.

This approach offers several advantages.

Firstly, it enhances testing by allowing individual testing of GUI elements, ensuring their

functionality before integration.

Secondly, it promotes improved reusability as inherited classes facilitate the reuse of GUI

elements across the application, thereby reducing redundant code.

Through these strategies, CAS Manager achieves a user interface that is flexible, scalable,

and easy to maintain.

Figure 10. Example of inheritance – designing entries for student data.

3.2 File paths
File paths play a crucial role in modular programming as they provide access to shared

resources like databases or theme colors across different parts of the program (Pitoru,

2012; Python documentation, n.d.). In CAS Manager, the built-in "pathlib" module is utilized

for this purpose, offering an OOP to path management. This choice is preferred over the

"os.path" module due to pathlib's simplicity and enhanced readability, making it easier to

handle file paths in Python.

Figure 11. Path to the database.

4. Third-party software

4.1 Packages
a) Requests: CAS Manager employs the "requests" package to verify the existence of a

portfolio (Success Criterion 11). This decision is based on the maturity of the

"requests" package, which offers a secure and efficient method for handling such

tasks.

Figure 12. Validating URL before insertion.

b) Pyinstaller: "pyinstaller" enables the creation of a single executable file, eliminating

the need for the installation of the Python interpreter and other dependencies. This is

especially important when delivering the program to clients who may not be familiar

with setting up a programming environment.

c) Pytest: "pytest" is a testing package for Python. Its use it outlined in the Criterion B.4.

This choice was made over the built-in unittest library because pytest simplifies test

setup and teardown by providing a fixture mechanism, and supplies built-in support

for test parameterization. These features enhance the testing capabilities of CAS

Manager.

Figure 14. Dark GUI elements. Figure 15. White GUI elements.

4.2 Theme
In response to the client's request for a customized appearance in CAS Manager's GUI

(Success Criterion 10), I employed a custom theme in Tkinter, the built-in Python module for

GUI development. By integrating the "Forest theme for ttk," an open-source theme (rbende,

2021), CAS Manager now offers both dark and light versions of widgets, aligning perfectly

with the client's desired visual style.

Figure 14. Dark GUI elements. Figure 15. White GUI elements.

Word count: 960

List of references
Pitrou, A. (2012). PEP 428 – The pathlib module – object-oriented filesystem

paths | peps.python.org. [online] Available at:

https://peps.python.org/pep-0428/ [Accessed 8 Aug. 2023].

Python Documentation. (n.d.). abc — Abstract Base Classes. [online] Available

at: https://docs.python.org/3/library/abc.html.

Python documentation. (n.d.). Descriptor How To Guide. [online] Available at:

https://docs.python.org/3/howto/descriptor.html?highlight=descriptors.

Python documentation. (n.d.). Built-in Types. [online] Available at:

https://docs.python.org/3/library/stdtypes.html#context-manager-

types.

Python documentation. (n.d.). 9. Classes. [online] Available at:

https://docs.python.org/3/tutorial/classes.html#inheritance.

Python documentation (n.d.). 11.1. pathlib — Object-oriented filesystem paths

— Python 3.7.0a2 documentation. [online] Available at:

https://python.readthedocs.io/en/latest/library/pathlib.html [Accessed

8 Aug. 2023].

rdbende (2023). Forest theme for ttk. [online] GitHub. Available at:

https://github.com/rdbende/Forest-ttk-theme.

Real Python. (2021). Context Managers and Python’s with Statement – Real

Python. [online] realpython.com. Available at:

https://realpython.com/python-with-statement/ [Accessed 8 Aug.

2023].

Real Python (2021). Functional Programming in Python: When and How to Use

It. [online] realpython.com. Available at:

https://realpython.com/python-functional-programming/ [Accessed 8

Aug. 2023].

Real Python. (2019). Python Descriptors: An Introduction – Real Python.

[online] realpython.com. Available at: https://realpython.com/python-

descriptors/ [Accessed 8 Aug. 2023].

Wikipedia. (2021). Dependency inversion principle. [online] Available at:

https://en.wikipedia.org/wiki/Dependency_inversion_principle.

https://github.com/rdbende/Forest-ttk-theme
https://realpython.com/python-functional-programming/
https://en.wikipedia.org/wiki/Dependency_inversion_principle

Wikipedia (2019). Functional programming. [online] Available at:

https://en.wikipedia.org/wiki/Functional_programming.

https://en.wikipedia.org/wiki/Functional_programming

