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1. Introduction 

Aircraft engineers are faced with a growing demand to construct machines that provide maximum 

payload and durability, while minimizing production and operational costs. To this end, they must 

develop mathematical models that enable the adoption of construction solutions that optimally 

meet these functionality requirements. 

In my investigation, I aim to develop a mathematical model for rectangular ribbed plates subjected 

to a shear force. These plates find extensive use in aviation, consisting of two main elements: the 

skin (plate itself) and the stringers (ribs) (Fig.1). Shear force is caused by air resistance. It is an 

unaligned force (Hibbeler, 2004), meaning it pushes a body in two opposite directions (Fig.2). 

 

 

Figure 1. Skin and stringer (adopted from 

Aeronautics-Guide, 2023). 

Figure 2. Shear force (arrows are the vectors 

of the force). 

My interest in aviation stems from my grandfather, a former glider and Cessna 152 pilot, who has 

always shared his flying stories with me. What particularly captivated me was the aspect of 

material science in aviation. When my grandpa showed me his dissertation, where he delved into 

different designs of materials for stability, I was hooked. With my exploration, I aim to immerse 
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myself in this fascinating field, paying tribute to my dear grandpa while indulging in valuable, 

math-and-engineering-oriented pursuits together. 

2. Mathematical formulation and aim 

The first thing I should note is that the strength of a single element is not the most crucial aspect 

here. This is because the skin losses stability (the ability to come back to the equilibrium if it was 

displayed from it due to shearing force) before the stringers do, which does not significantly impact 

the aircraft's flight. However, when the stringers lose stability, it causes irreversible damage that 

makes the aircraft inoperable. The stability of the skin stability is known as local stability and the 

stability of the stringers as global stability (Hibbeler, 2004).  

In more mathematical terms, I can represent the described scenario as follows. Assuming a small 

shear strain (typical for the small deformations experienced by aircraft), the resulting displacement 

leads to an increase in the strain energy of the system ∆𝑈. Simultaneously, the generalized load 𝑃 

moving over a short distance performs work equal to ∆𝑇. Then I can consider two cases: 

A. stable equilibrium, expressed as ∆𝑈 > ∆𝑇, which corresponds to the loss of the local 

stability.  

B. unstable equilibrium, expressed as ∆𝑈 < ∆𝑇,  which corresponds to the loss of the global 

stability.  

I am interested in determining the critical value of the load 𝑃 that transitions Case 𝐴 to Case 𝐵, 

which I can derive from the equation representing the state between these cases: 

∆𝑈 =  ∆𝑇 (1) 
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Therefore, I will be seeking formulas for ΔU and Δ𝑇 to determine the critical value of shear stress 

((Nxy)
cr

) when the loss of global stability occurs. To proceed, I will define the internal forces 

within the plate and then outline the external forces acting upon it. 

As a sidenote, I have decided to forego determining the formula for the loss of local stability due 

to the complexity it would introduce. This decision is also because the formulas for the loss of 

global and local stability are independent, so the determination of one does not affect the other. 

3. Model development 

3.1 Internal forces 

My grandfather mentioned that both the skin and the stringers of airplanes are typically made of 

aluminum. Upon further research, I found confirmation of this in the material engineering textbook 

"Mechanics of Materials" by R.C. Hibbeler (Hibbeler, 2004). This is a significant observation since 

aluminum is an isotropic material, meaning it behaves the same in all directions. This characteristic 

allows me to apply the generalized Hooke’s Law, which models stress-strain relations (Hibbeler, 

2004). 

However, the generalized Hooke's Law usually describes stresses and strains in three-dimensional 

space (Hibbeler, 2004), which is unnecessary for my model. The skin of airplanes is very thin to 

reduce the aircraft's mass, making deformations in this dimension negligible. Therefore, I can omit 

this dimension in formulating my model. 

To be more specific, I will make the following assumptions: 

a) Normal strain 𝜀𝑧 is negligible in influencing plate deformation due to the small thickness 

of the plate, ℎ, relative to other dimensions (length 𝑎 and width 𝑏). 
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b) Load 𝑤 is independent of shear stresses 𝜏𝑥𝑧 and 𝜏𝑦𝑥 

c) The remaining strains 𝜀𝑥, 𝜀𝑦, and 𝛾 acting on the plate at a distance 𝑧 from the neutral axis 

are proportionate to the distance 𝑧. 

Given these assumptions, I can modify the generalized Hooke's Law to describe a two-dimensional 

stress state for each layer of the bent plate cross-section with a thickness 𝑑𝑧 as follows: 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦) 𝜀𝑦 =

1

𝐸
(𝜎𝑦 − 𝜈𝜎𝑥) 𝛾 =

𝜏

𝐺𝑜
 (2) 

where 𝐸 is  Young's modulus, 𝜎𝑥 and 𝜎𝑦 are stresses in x and y axes, 𝑣 is a Poisson’s ratio, 𝐺𝑜 is a 

shear modulus, 𝛾 is a shear strain, 𝜏 is a shear stress. 

Essentially, formulas (2) allow me to calculate the displacement of material particles when a force 

is applied. Another way to conceptualize this is that all points initially located along the neutral 

axis (Fig. 3) experience a small displacement (Fig. 4) due to the stresses outlined earlier. 

  

Figure 3. Neutral axis points Figure 4. The displacement of points 

More formally, points with original coordinates 𝑥, 𝑦, 𝑧 move to positions 𝑥 + 𝑢, 𝑦 + 𝑣, 𝑧 + 𝑤 

where: 𝑢 = −𝑧
𝛿𝑤

𝛿𝑥
, 𝑣 = −𝑧

𝛿𝑤

𝛿𝑦
. 
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Hence: 

𝜀𝑥 =  
𝛿𝑢

𝛿𝑥
 =  −𝑧

𝛿2𝑤

𝛿𝑥2
 𝜀𝑦 =  

𝛿𝑣

𝛿𝑦
 =  −𝑧

𝛿2𝑤

𝛿𝑦2
 𝛾 =  

𝛿𝑢

𝛿𝑦 
+

𝛿𝑣

𝛿𝑥
 =  −𝑧

𝛿2𝑤

𝛿𝑥𝛿𝑦
 

If I substitute the strains defined in the equations (2) and solve these equations for stresses, I obtain 

the following expressions: 

𝜎𝑥 = −
1

1 − 𝜐2
𝐸 (

𝛿2𝑤

𝛿𝑥2
+ 𝜐

𝛿2𝑤

𝛿𝑦2
) 𝑧 

(3) 𝜎𝑦 = −
1

1 − 𝜐2
𝐸 (𝜐

𝛿2𝑤

𝛿𝑑
+

𝛿2𝑤

𝛿𝑦2
) 𝑧 

𝜏 =  −2𝐺0

𝛿2𝑤

𝛿𝑥𝛿𝑦
𝑧 

These stresses act on the walls ℎ𝑑𝑥 and ℎ𝑑𝑦 of the plate, causing it to concave and rotate this plate. 

They do so by yielding two bending moments, 𝑀𝑥 and 𝑀𝑦 (Fig. 5) which cause concavity, and one 

moment of torsion, 𝑀0 (Fig. 6) which causes rotation. These moments are referred to per unit width 

of the cross-section. 

  

Figure 5. Bending moments Figure 6. Moment of torsion 
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Furthermore, the stresses that induce these moments and act within the plate vary across the cross-

section, linearly increasing from the center (as indicated by the arrow sizes in Fig. 5,6), denoted as 

ℎ/2. Additionally, the stresses are compressive on one side and tensile on the other (as indicated 

by the arrow directions in Fig. 5,6), referenced as ℎ/2 and −ℎ/2, respectively. I can aggregate 

these stresses by integrating with respect to x and y. 

To this end, I define the following integrals: 

𝑀𝑥𝑑𝑦 = ∫ ∫ 𝜎𝑥𝑧 𝑑𝑦 𝑑𝑧
ℎ/2

−ℎ/2
𝑧

 𝑀𝑦𝑑𝑥 = ∫ ∫ 𝜎𝑦𝑧 𝑑𝑥 𝑑𝑧
ℎ/2

−ℎ/2
𝑧

 𝑀0𝑑𝑥 = ∫ ∫ 𝜏𝑧 𝑑𝑥 𝑑𝑧
ℎ/2

−ℎ/2
𝑧

 

By integrating them, I can obtain the moments for the internal forces: 

𝑀𝑥 = −𝐷𝑥 (
𝛿2𝑤

𝛿𝑥2
+ 𝜐

𝛿2𝑤

𝛿𝑦2
) 𝑀𝑦 = −𝐷𝑦 (𝜐

𝛿2𝑤

𝛿𝑥2
+

𝛿2𝑤

𝛿𝑦2
) 𝑀0 =  −2𝐽

𝛿2𝑤

𝛿𝑥𝛿𝑦
 (4) 

where 𝐷𝑥 and 𝐷𝑦 are flexural rigidity for 𝑥 and 𝑦, and 𝐽 is torsion constant. 

I can now express the change in potential energy of deformation in the plate as half the sum of 

moments multiplied by their corresponding angular deformations. If I assume that the angle 

between the walls ℎ𝑑𝑦 of the ℎ𝑑𝑦𝑑𝑥 element is, after deformation, - 
𝛿2𝑤

𝛿𝑥2 , the formula of the 

potential energy for the bending moment 𝑀𝑥 is: −
1

2
𝑀𝑥

𝛿2𝑤

𝛿𝑥2  𝑑𝑥 𝑑𝑦. And for the bending moment 

𝑀𝑦, it is: −
1

2
𝑀𝑦

𝛿2𝑤

𝛿𝑦2  𝑑𝑥 𝑑𝑦. The angles of twist of opposite walls of the plate are given by: -

 
𝛿2𝑤

𝛿𝑥𝛿𝑦
 𝑑𝑥, - 

𝛿2𝑤

𝛿𝑥𝛿𝑦
 𝑑𝑦. Their corresponding moments of torsion have values: 𝑀0𝑑𝑥, 𝑀0𝑑𝑦. Hence, 

the increment of potential energy is given by: 

Δ𝑈 =  − 
1

2
∬ (𝑀𝑥

𝛿2𝑤

𝛿𝑥2
+ 𝑀𝑦

𝛿2𝑤

𝛿𝑦2
+ 𝑀0

𝛿2𝑤

𝛿𝑥𝛿𝑦
) 𝑑𝑥𝑑𝑦  
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If I substitute the expressions for the moments from the formulas (4) and simplify, I get: 

Furthermore, I have access to a Polish book from my grandfather's studies, "Zagadnienia 

Stateczności Sprężystej" by J. Nalaszkiewicz (Nalaszkiewicz, 1958). According to this book, the 

formula for the work of internal forces in the mid-plane of the plate, which I will modify, is as 

follows: 

ΔT =  − 
1

2
∬ [𝑁𝑥 (

𝛿𝑤

𝛿𝑥
)

2

+ 𝑁𝑦 (
𝛿𝑤

𝛿𝑦
)

2

+  4𝑁𝑥𝑦

𝛿𝑤

𝛿𝑥

𝛿𝑤

𝛿𝑦
 ] 𝑑𝑥 𝑑𝑦 (6) 

where 𝑁𝑥 and 𝑁𝑦 are normal stresses along the 𝑥 and 𝑦 axes, respectively, and 𝑁𝑥𝑦 is the shear 

stress. 

Having defined Δ𝑈 and ΔT for the forces within the plate, I can now proceed to determining forces 

acting on it. 

3.2 External forces 

I now replace the ribbed plate with a smooth plate of unchanged dimensions and stiffness 

characteristics. The latter are defined by the flexural rigidity of the bending of the plate: 

𝐷𝑥 =  
𝐸ℎ3

12(1 − 𝜐2)
 (7.1) 

𝐷𝑦 =  
𝐸ℎ3

12(1 − 𝜐2)
 +  

𝐸𝐽

𝑑
 (7.2) 

and torsion constant: 

𝐽 =  
𝐺ℎ3

12
 + 

𝐶𝑠

2𝑑
, 𝐺 =  

𝐸ℎ3

2(1−𝜐)
, 𝐶𝑠 =

𝐺ℎ𝜋2

𝑠
 (7.3) 

Δ𝑈 =  − 
1

2
∬ [𝐷𝑥 (

𝛿2𝑤

𝛿𝑥2
)

2

+ 𝐷𝑦 (
𝛿2𝑤

𝛿𝑦2
)

2

+ 𝜐(𝐷𝑥 + 𝐷𝑦)
𝛿𝑤

𝛿𝑥

𝛿𝑤

𝛿𝑦
+ 4𝐶 (

𝛿2𝑤

𝛿𝑥𝛿𝑦
)] 𝑑𝑥 𝑑𝑦 (5) 
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where 𝐶𝑠 denotes the torsion constant for the ribs. 

According to the above-mentioned Nalaszkiewicz (1958), the load can be described as a double 

trigonometric series: 

𝑤 =  ∑ ∑ 𝐴𝑚𝑛𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎

∞

𝑛=1

∞

𝑚=1

 𝑠𝑖𝑛
𝑛𝜋𝑦

𝑏
 (8) 

The series satisfies the boundary conditions: for 𝑥 = 0 and 𝑦 = 𝑎, it gives 𝑤 = 0 and 
𝛿2𝑤

𝛿𝑥2 = 0, 

and for 𝑦 = 0 and 𝑦 = 𝑏, it gives 𝑤 = 0 and 
𝛿2𝑤

𝛿𝑦2 = 0. 

Moreover, considering the fact that the plate, in this case, is subjected to the shear stress, the 

formula (6) can be written as: 

Δ𝑇 =  −𝑁𝑥𝑦 ∬
𝛿𝑤

𝛿𝑥

𝛿𝑤

𝛿𝑦
 𝑑𝑥 𝑑𝑦 (9) 

At this point, I can calculate partial derivatives of the formula (8) to substitute them in the formulas 

for 𝛥𝑈 (5) and 𝛥𝑇 (9). This was, I obtain the following formulas: 

𝛿𝑤

𝛿𝑥
=  ∑ ∑ 𝐴𝑚𝑛

𝑚𝜋

𝑎
𝑛

 𝑠𝑖𝑛
𝑛𝜋𝑦

𝑏
𝑚

 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑎
 (10.1) 

𝛿2𝑤

𝛿𝑥2
 =  − ∑ ∑ 𝐴𝑚𝑛

𝑚2𝜋2

𝑎2

𝑛

 𝑠𝑖𝑛
𝑛𝜋𝑦

𝑏
𝑚

 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑎
 (10.2) 

𝛿𝑤

𝛿𝑦
=  ∑ ∑ 𝐴𝑚𝑛

𝑛𝜋

𝑏
𝑛

 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑚

 𝑐𝑜𝑠
𝑛𝜋𝑦

𝑏
 (10.3) 

𝛿2𝑤

𝛿𝑦2
 =  − ∑ ∑ 𝐴𝑚𝑛

𝑛2𝜋2

𝑏2

𝑛

 𝑠𝑖𝑛
𝑚𝜋𝑦

𝑏
𝑚

 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑎
 (10.4) 
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𝛿2𝑤

𝛿𝑥𝛿𝑦
=  − ∑ ∑ 𝐴𝑚𝑛

𝑚𝑛𝜋2

𝑎𝑏
𝑛

 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑚

 𝑐𝑜𝑠
𝑚𝜋𝑦

𝑏
 (10.5) 

 

Substituting expressions (10.1) and (10.3) into equation (9), I get the equation as follows: 

This seems complex so I will simplify it. If I assume that: 

𝐾 =  ∬ (𝑠𝑖𝑛
𝑁𝜋𝑦

𝑏
𝑐𝑜𝑠

𝑀𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑚𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑦

𝑏
) dx dy  (12) 

I can rewrite (11) as follows: 

Δ𝑇 =  −2𝑁𝑥𝑦 ∑ ∑ 𝐴𝑀𝑁

𝑁𝑀

𝑀𝜋𝑥

𝑎
[∑ ∑ 𝐴𝑚𝑛

𝑛𝜋

𝑏
𝐾

𝑛𝑚

] (13) 

Moreover, I can further simplify the equation (13) because for 𝑀 ± 𝑚 and 𝑁 ± 𝑛 being even, 

𝐾 = 0. Hence, for 𝑀 ± 𝑚 and 𝑁 ± 𝑛 being odd, equation (12) takes the form: 

𝐾 =  
2𝑚 ∙ 𝑎 ∙ 𝑏 ∙ 2𝑁

𝜋2(𝑚2 − 𝑀2)(𝑁2 − 𝑛2)
 (14) 

Accordingly, the final version of 𝛥𝑇, takes the form: 

Δ𝑇 =  −8𝑁𝑥𝑦 ∑ ∑ ∑ ∑ 𝐴𝑀𝑁𝐴𝑚𝑛

𝑀 ∙ 𝑁 ∙ 𝑚 ∙ 𝑛

(𝑚2 − 𝑀2)(𝑁2 − 𝑛2)
𝑛𝑚𝑁𝑀

 (15) 

Now I can return to finding the final formula for 𝛥𝑈. By substituting expressions (10.2), (10.4), 

and (10.5) into equation (5) and introducing the following notations: 

∆𝑈 =  𝑈1 +  𝑈2 +  𝑈3 +  𝑈4 (16.1) 

∆𝑇 = −2𝑁𝑥𝑦 ∬ [(∑ ∑ 𝐴𝑚𝑛

𝑛

𝑊1

𝑚

) (∑ ∑ 𝐴𝑚𝑛

𝑛𝑚

𝑊2)] 𝑑𝑥𝑑𝑦 (11) 

where 𝑊1 =
𝑚𝜋

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏
 𝑐𝑜𝑠

𝑚𝜋𝑥

𝑎
 𝑎𝑛𝑑 𝑊2 =

𝑛𝜋

𝑏
𝑠𝑖𝑛

𝑚𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑦

𝑏
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𝑈1 =  
1

2
∬ 𝐷𝑥(

𝛿2𝑤

𝛿𝑥2
)2 𝑑𝑥 𝑑𝑦 (16.2) 

𝑈2 =  
1

2
∬ 𝐷𝑦(

𝛿2𝑤

𝛿𝑦2
)2 𝑑𝑥 𝑑𝑦 (16.3) 

𝑈3 =  
1

2
∬ 𝜈(𝐷𝑥 + 𝐷𝑦)

𝛿2𝑤

𝛿𝑥2

𝛿2𝑤

𝛿𝑦2
𝑑𝑥𝑑𝑦 (16.4) 

𝑈4 =  
1

2
∬ 4𝐶(

𝛿2𝑤

𝛿𝑥𝛿𝑦
)2 𝑑𝑥 𝑑𝑦 (16.5) 

𝐿 =  ∬ (𝑠𝑖𝑛
𝑁𝜋𝑦

𝑏
 𝑠𝑖𝑛

𝑀𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏
) 𝑑𝑥𝑑𝑦 (16.6) 

𝑍 =  ∬ (𝑐𝑜𝑠
𝑁𝜋𝑦

𝑏
 𝑐𝑜𝑠

𝑀𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑚𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑦

𝑏
) (16.7) 

and considering that for 𝑀 ≠ 𝑚 and 𝑁 ≠ 𝑛; 𝐿 =  0 and 𝑍 = 0, while for 𝑀 =  𝑚 and 𝑁 =  𝑛: 

𝐿 =  
𝑎 ∙ 𝑏

4
  ,               𝑍 =  

𝑎 ∙ 𝑏

4
 

then I have: 

𝑈1 =  𝐷𝑥

𝑎 ∙ 𝑏

4
∑ ∑ 𝐴𝑚𝑛

2
𝑚4𝜋4

𝑎4

𝑛

   ,

𝑚

 

𝑈2 =  𝐷𝑦

𝑎 ∙ 𝑏

4
∑ ∑ 𝐴𝑚𝑛

2
𝑛4𝜋4

𝑏4

𝑛

   ,

𝑚

 

𝑈3 = 𝜈(𝐷𝑥 + 𝐷𝑦)
𝑎 ∙ 𝑏

4
∑ ∑ 𝐴𝑚𝑛

2
𝑚2𝑛2𝜋4

𝑎2𝑏2

𝑛

   ,

𝑚

 

𝑈4 =  4𝐶 
𝑎 ∙ 𝑏

4
∑ ∑ 𝐴𝑚𝑛

2
𝑚2𝑛2𝜋4

𝑎2𝑏2

𝑛

   .

𝑚

 

Having calculated those dependencies, I can substitute them into the equation (16.1) such that the 

increment of internal energy takes the form: 



11 
 

∆𝑈 =  
1

8
𝑎𝑏𝜋4 ∑ ∑ 𝐴𝑚𝑛

2

𝑛

[(𝐷𝑥

𝑚4

𝑎4
+ 𝐷𝑦

𝑛4

𝑏4
) +

𝑚2𝑛2

𝑎2𝑏2
{𝜈(𝐷𝑥 + 𝐷𝑦) + 4𝐶}]

𝑚

 (17) 

Finally, I can make the assumption of equality between the increment of internal energy and the 

work of external forces, and substitute (15) and (17) into the equation (1) like this: 

−8𝑁𝑥𝑦 ∑ ∑ ∑ ∑ 𝐴𝑀𝑁𝐴𝑚𝑛𝑄

𝑛

=
1

2
𝑇1 ∑ ∑ 𝐴𝑚𝑛

2

𝑛

[(𝐷𝑥

𝑚4

𝑎4
+ 𝐷𝑦

𝑛4

𝑏4
) + 𝑅𝑚2𝑛2] 

𝑚𝑚𝑁𝑀

 (18) 

where: 𝑇1 =  
𝑎∙𝑏∙𝜋4

4
, 𝑅 =  

𝜈(𝐷𝑥+𝐷𝑦)+4𝐶

𝑎2𝑏2
, 𝑄 =

𝑀∙𝑁∙𝑚∙𝑛

(𝑚2−𝑀2)(𝑁2−𝑛2)
. 

At this point, since I aim to minimize the shear stress, I need to determine the value of Amn such 

that Nxy is at its minimum. To achieve this, I can differentiate equation (18) with respect to 𝐴𝑚𝑛 

as follows: 

−8𝑁𝑥𝑦 ∑ ∑ ∑ ∑ 𝐴𝑚𝑛𝑄

𝑛

 + 𝑇1 ∑ ∑ 𝐴𝑚𝑛
2

𝑛

[(𝐷𝑥

𝑚4

𝑎4
+ 𝐷𝑦

𝑛4

𝑏4
) + 𝑅𝑚2𝑛2]  = 0

𝑚𝑚𝑁𝑀

 (19) 

Upon further study from another book provided by my grandfather, "Teoria stateczności 

sprężystej" by Timoshenko & Gere, I discovered that the equation (19) in its current form can lead 

to results deviating from the empirically determined exact value by 15% (Timoshenko & Gere, 

1963). This level of deviation was unacceptable, so I needed to change my approach. Luckily, 

within the same book, I found a method that involves representing the equation (19) as a system 

of linear equations with unknowns Amn. 

As explained by Timoshenko & Gere (1963), this system can be divided into two groups: the first 

group contains coefficients 𝐴𝑚𝑛 where 𝑚 + 𝑛 are odd numbers, while the second group covers 

cases where 𝑚 + 𝑛 are even numbers. The authors also suggest that for short plates (𝑎/𝑏 < 2), 

which is the case here as the skin is relatively wide, the lower value of (𝑁𝑥𝑦)𝑐𝑟 is obtained from 
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the second group of equations. Timoshenko & Gere state that the approximation error obtained 

from considering five equations is around 1%, which is a significant improvement. 

Taking all this into consideration, the non-zero coefficients are considered as A11, A22, A31, A33. 

My system of linear equations (19) takes therefore the form: 

I considered several methods to solve this system of linear. Graphical, elimination, and substitution 

methods were among the first I thought of, but these approaches were not practical for a system of 

five equations. The Gaussian method seemed viable, but I was not sure how to transform the matrix 

into a triangular form. 

Seeking guidance, I consulted my grandfather, who suggested a method involving the determinant 

of the system of equations set to zero. After some trial-and-error, the resulting equation took the 

form: 

  

𝐴11 ∙ 𝑇1 (
𝐷𝑥

𝑎4
+

𝐷𝑦

𝑏4
+ 𝑅) −

32

9
𝐴22𝑁𝑥𝑦 = 0 (20.1) 

𝐴22 ∙ 𝑇1 (16
𝐷𝑥

𝑎4
+ 16

𝐷𝑦

𝑏4
+ 16𝑅) −

32

9
𝐴11𝑁𝑥𝑦 +

32

5
𝐴13𝑁𝑥𝑦 +

32

5
𝐴31𝑁𝑥𝑦 +

288

25
𝐴33𝑁𝑥𝑦 = 0 (20.2) 

32

5
𝐴22𝑁𝑥𝑦 + 𝐴13𝑇1 (

𝐷𝑥

𝑎4
+ 81

𝐷𝑦

𝑏4
+ 9𝑅) = 0 (20.3) 

32

5
𝐴22𝑁𝑥𝑦 + 𝐴31 ∙ 𝑇1 (81

𝐷𝑥

𝑎4
+

𝐷𝑦

𝑏4
+ 9𝑅) = 0 (20.4) 

−
288

25
𝐴22𝑁𝑥𝑦 + 𝐴33 ∙ 𝑇1 (81

𝐷𝑥

𝑎4
+

𝐷𝑦

𝑏4
+ 81𝑅) = 0 (20.5) 
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This equation required finding the determinant by splitting the matrix into third minors and 

calculating them using the Saruss Rule. However, I was concerned about potential errors in 

manually calculating these minors. 

Fortunately, I discovered a useful tool, the eMathHelp that is "designed to assist [students] at every 

step", which simplified the process. With this tool, I could input the minors and receive accurate 

results. After utilizing the calculator and simplifying the output, I arrived at the final formula: 

(𝑁𝑥𝑦)𝑐𝑟 =  ±
225

85
𝑇1

𝐹1√𝐹2 ∙ 𝐹3

√2025 ∙ 𝐹1 ∙  𝐹4  +  706 ∙ 𝐹2 ∙ 𝐹3

 (21) 

where  

𝐹1 =  
𝐷𝑥

𝑎4 +
𝐷𝑦

𝑏4 + 𝑅, 𝐹2 =  
𝐷𝑥

𝑎4 + 81
𝐷𝑦

𝑏4 + 9𝑅, 𝐹3 = 81
𝐷𝑥

𝑎4 +
𝐷𝑦

𝑏4 + 9𝑅, 𝐹4 =  82
𝐷𝑥

𝑎4 + 82
𝐷𝑦

𝑏4 + 18𝑅. 

  

𝑇1 (
𝐷𝑥

𝑎4
+

𝐷𝑦

𝑏4
+ 𝑅) − 

32

9
𝑁𝑥𝑦 0 0 0 

= 0 

− 
32

9
𝑁𝑥𝑦 16𝑇1 (

𝐷𝑥

𝑎4
+

𝐷𝑦

𝑏4
+ 𝑅) 

32

5
𝑁𝑥𝑦 

32

5
𝑁𝑥𝑦 −

288

25
𝑁𝑥𝑦 

0 
32

5
𝑁𝑥𝑦 𝑇1 (

𝐷𝑥

𝑎4
+

81𝐷𝑦

𝑏4
+ 9𝑅) 0 0 

0 
32

5
𝑁𝑥𝑦 0 𝑇1 (

81𝐷𝑥

𝑎4
+

𝐷𝑦

𝑏4
+ 9𝑅) 0 

0 −
288

25
𝑁𝑥𝑦 0 0 81𝑇1 (

𝐷𝑥

𝑎4
+

𝐷𝑦

𝑏4
+ 𝑅) 
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4. Limitations 

Mathematical models, including mine, are imperfect representations of reality due to the inherent 

complexity of the world. My model also has its limitations, which are important to consider. 

Firstly, I assumed in my model that the material is "perfect," without defects, allowing for an even 

distribution of stress. However, no material is truly flawless, and defects such as vacancies or 

interstitials can accumulate stress, weakening the material and potentially leading to failure under 

load (Hibbeler, 2004). While small defects are usually negligible, the presence of numerous defects 

can significantly impact a material's behavior, potentially deviating from the model's predictions. 

Secondly, my model is designed for plates with three ribs or more. Research has shown that plates 

with fewer than three ribs offer minimal to no strength benefits (Kuhn et al., 1952). Thus, the 

model accurately describes the behavior of plates with at least three ribs within an acceptable error 

margin. However, plates with fewer ribs exhibit fundamentally different behavior, and the 

predictions of my model may not apply to such cases. 

5. Conclusion 

In conclusion, I have developed a reasonably accurate model for determining the critical value of 

stresses at which global stability is lost for the ribbed plate, despite the limitations of the model. 

This process allowed me to apply the mathematics I have learned in my classes but on a more 

advanced level. I delved into partial derivatives, which not only proved to be very useful for 

developing my model but also turned out to be less daunting than I initially thought. Exploring the 

limitations of methods for solving systems of linear equations, I discovered new techniques and 

their practicality.  
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Additionally, I became acquainted with a new tool, the eMathHelp calculator, which proved 

incredibly useful. This experience has deepened my appreciation for the role of tools in 

mathematics and mathematical modeling, highlighting their efficiency and accuracy in the process. 

However, the most valuable aspect of this work for me was the bonding experience I had with my 

grandfather. Each time I asked my grandfather a question about my investigation, it sparked deep 

discussions about mathematics, engineering, and aircraft in general. We spent literally hours 

immersed in these conversations, delving into the intricacies of the subject matter. I am grateful 

for this time spent together, as it not only enhanced my understanding of the project but also 

strengthened our bond. 

There is another significant aspect of spending so much time with my grandfather discussing the 

subject. We communicated in Polish, and all the technical terms were provided and explained to 

me by my grandfather in Polish. While my grandfather has a communicative level of English, he 

is not familiar with technical terms in English. Additionally, his English speaking ability did not 

allow him to assist me in searching for terms in English, which often turned out to be quite different 

from their Polish counterparts. As a result, I had to spend extra time just to get started with the 

topic and search for the appropriate professional terminology. 

Nonetheless, regarding the model itself, I am disappointed that I could not physically test it due to 

the lack of a ribbed plate model (Fig. 7), which is both large and expensive. This limitation leaves 

room for further investigation in the future. 
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Figure 7. Ribbed plate model (adopted from Kuhn et al., 1952) 

Furthermore, I regret that I was unable to determine the formula for local stability to complete the 

considerations about stability in planes. The intricacies of this topic are vast, and it would require 

much more space to delve into it adequately. However, this creates an opportunity for future 

investigation and exploration, perhaps as a continuation of this study. 

Overall, this investigation was a pleasurable and highly interesting experience. While I may not 

pursue aircraft engineering as a career path, the insights I gained into the technical aspects of planes 

have been truly enlightening.  
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